IN INVOLVING THIRD PARTIES, ORGANIZATIONS AND ADVISERS IN EUROPEAN PROJECTS—THE PROJECT MANAGERS’ POSITION

(1) European Schoolnet (2) MAGMA (3) Teachers Education Centre in Bialystok (4) Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences (5) Podružnica matematičara Valjevo (6) Casa Corpului Didactic- Bucharest (7) University of Nicosia (8) Haus der Astronomie (9) Bloomfield Science Museum Jerusalem (10) University of Burgos (11) Computer society of Macedonia (12) ANISN (13) Science Culture Educational Center - Aristotelio (14) SOFTel Università di Napoli Federico II (15) Manchester Metropolitan University (16) INCLUDE (17) Ministry of Education of Israel (18) SEMCV (19) Haus der Astronomie (20) Calarasi County School Inspectorate.

Abstract

This paper provides an overview of the discussions between project managers and organization representatives operating in the field of Science Education on the topic of “involving third parties, organizations and advisors in European projects.” The discussions followed the characteristics of a focus group. The data was collected through detailed minutes taken over the duration of the event. Those present at the event answered four questions: (1) what organization types could provide support to their projects? (2) why would other organizations wish to get involved in their projects, (3) what type of partnerships can be established, and (4) what are the difficulties (and solutions to overcome them) that can be posed by working in partnerships? Following their discussion, it was found that project representatives (1) tend to lean more towards establishing partnerships with public institutions than with private ones, (2) tend to see the “sharing of knowledge” as an important and desirable practice amongst projects and organization, (3) are happy to involve different actors in their projects and, most importantly, (4) think that the benefits of collaboration outweigh the potential difficulties of partnerships.

Keywords: partnerships, public funded projects, science, education, EU, third parties, organizations, advisors

Introduction

Scientix, the Community for Science Education in Europe (http://scientix.eu), organizes regular networking events for science education projects and organizations involved in STEM education to allow participants to share their experiences, present their work, and to facilitate creating new collaborations and partnerships. Each of these events is centred on a specific topic related to Science Education.
The basis for this study follows the discussions between project and organization representatives from the national and European educational scenes who participated in the 7th Scientix Projects’ Networking Event (7thSPNE), event organized by Scientix and taking place in the European Schoolnet (EUN) headquarters on 19th June, 2015. The event brought together 28 representatives from 20 different projects and organizations involved in STEM education and teacher training.

The main aim of the meeting was that of supporting projects involved in Science education throughout Europe. By providing the attendees with a networking space, they were able to share ideas and find solutions to common problems. In particular, the 7thSPNE discussion topic was “Involving other third parties, organizations and advisers in European projects (who, how, what for)”. For this, participants were invited to engage in discussions related to the theme of the event.

The event’s structure included two main sections: an introductory section, where project and organization representatives were allowed 10 minutes time slots for presenting their projects, stressing on the collaboration with other organizations. They were then divided into groups and allowed to discuss on the theme of the event. The ideas and conclusions that resulted from the group discussions were then shared openly with the other participants, under the guidance of the Scientix facilitator who helped drive the discussion forward.

Overview of the participating projects

The participants were selected through an open call published on the Scientix portal, where the topic of the event was explained and the eligibility criteria for participation were outlined. This meant that the final selection brought together organizations with similar backgrounds and expertise. As a result of the selection criteria, all participating projects had a European or national background and have been beneficiaries of public funds. Most importantly, they all came from the field of STEM education, having had previous experience of supporting schools and teachers in this area. Lastly, most were long-established institutions, with a strong background in collaborating with schools and/or universities, producing teaching materials and organizing events.

In contrast with these common characteristics and from the viewpoint of the organization types, the participants represented a varied mixed of institutions, including universities, science museums, teachers’ training centres, teachers’ associations, science education NGOs and public bodies. It must be noted that, in part due to the requirements of the call, other stakeholders in science education were not represented during the event (such as parent associations or private companies). 15 projects were presented during the first section of the event, as follows: ENGINEER, MaSciL, UNAWE, Quantum SpinOff, Societat d’Educació Matemàtica de la Comunitat Valenciana Al Khwarizmi (SEMCV), Podružnica matematičara Valjevo, Teachers Education Centre in Bialystok, Science Culture Education Center-Aristotelio, ANISN, Casa Corpului Didactic Bucuresti, Magma, INCLUDE, SOFTel Università di Napoli Federico II, ICT Macedonia.
Theoretical framework

Whilst not specifically designed as such, the data collection followed the characteristics of a focus group. The focus group methodology is based on a constructivist approach to data gathering and analysis, where a group of people are invited to answer questions about their opinions, beliefs and attitudes towards a certain product, situation or activity. As explained by Robinson (1999) [1], the focus group takes the shape of an open interview, employing “an interviewing technique”, where “participants are typically a homogenous group of people who are asked to reflect on a series of questions posed by the interviewer.”

The last session of the event mirrored the characteristics outlined above. Following the project presentations, the ideas exchange session lasted for two hours and explored the topic of “involving third parties, organizations and advisors in European projects”; participants were informed about the theme of the event beforehand and the discussion session was facilitated by Scientix project manager Agueda Gras.

During this, participants were divided into groups of 6-7 and invited to consider the following four questions.

1. What type of organizations can they involve to provide support in their organization/projects?
2. What could motivate other agencies to get involved with their projects?
3. What are the types of partnerships they could establish?
4. What are the difficulties that can arise within the different types of partnerships and how can they be resolved?

Their answers were later shared in an open discussion, allowing ideas to be further developed and new conclusions reached. An overview and analysis of their discussion is provided in the sections below.

Main findings

1. Types of organizations that could support projects in Science Education

Participants were invited to consider the types of organizations that could provide support in their activities. Most spontaneous answers reflected institutions/organizations belonging to the public domain; schools, universities, science/research centres, museums and local/national administrative bodies (such as municipalities) were amongst the first types of organizations identified.

At the intervention of the facilitator, the following private and civil entities were mentioned: industry providers of educational materials, NGOs and volunteering associations, families and parents associations, private companies and media organizations.

The involvement of different private and civil institutions was given particular attention. Thus, partnerships with industry representatives were generally seen as desirable, although more
difficult to attract. Media organizations, however, although acknowledged to be important in the dissemination of projects, were met with some reserve due to the lack of control over how key messages are being transmitted. Similarly, social media dissemination, whilst efficient in targeting well defined audiences, can attract difficulties in managing public reactions.

2. Incentives for project collaboration

The second point of discussion referred to the main reasons why other organizations would wish to get involved with science education projects. In other words, what can projects activating in the field of science education offer external organizations, to motivate them to offer their support?

Most answers came from the field of knowledge dissemination outside the project; thus, the mutual sharing of expertise between projects and organizations was described as beneficial and a strong incentive for project collaboration. Other answers that can be seen as consequences/effects of knowledge sharing have also been mentioned: collaboration was seen as a strong motor for expanding/growing the organization, a good way to promote and share good practices, of increasing creativity (through getting more people with different backgrounds involved in the projects) and easing the development of new products and ideas. Related with facilitating the dissemination of knowledge, but leaning more towards addressing one of the recurrent issues in STEM education, “closing the gap between research and practice” was mentioned by one of the participants. In fact, one of the six recommendations produced by European Commission’s Expert Group on Science Education - through the report “Science Education for Responsible Citizenship” published in 2015 – addresses this particular point: “Too often research and knowledge about interesting practices is fragmented, unknown or misunderstood. But, working to a common agenda can help bring about sustainable change if all citizens understand the issues, the rationale and consequences” [2]. Thus, collaboration facilitates the dissemination of knowledge between organizations, which is an admirable effort towards producing unified, and, in many cases, interdisciplinary public resources.

Financial aspects were also brought up, participants agreeing that partnerships can increase the quality of the projects, and thus the chances of accessing funding.

Less prevalent, but nevertheless, mentioned during the exchange, were aspects related to the organization’s reputation. Thus, collaboration was seen as a good way to make your organization or project known to different stakeholders and to increase the reputation of the organization. Fostering national and international collaborations was acknowledged as a particularly positive outcome of creating partnerships, especially useful in the field of Science Education, where the transfer of ideas and practices is seen as essential.

3. Partnerships and implications

The different types of partnerships that can be established between projects and other outside organizations were also explored during the talks. Three main distinctions were made at the formal level, describing the formal/legal nature of the relationships between organizations and/or individuals: subcontractors, third parties and advisory boards. The implications of each are outlined in this section.
The European Commission’s *Guide to Financial Issues* [3] defines a *subcontractor* as a “type of third party (…) which is not a beneficiary of the ECGA” and is not a signatory to it” which “appears in the project because one of the beneficiaries appeals to its services to carry out part of the work.” The price charged by the subcontractor for the work it carries out includes usually a profit for the subcontractor, making it “a third party whose interest in the project is only the profit that the commercial transaction will bring.”

One of the issues mentioned by the participants when discussing subcontracting organizations to advance some of the project activities was the bureaucratic strain that can be put on projects when partnerships are not successful. Whilst the advantages of involving subcontractors were clearly stated (they can carry out an important part of the work), the main matters raised were financial (as defined above, the price charged by subcontractors to carry out work normally includes a profit), although aspects such as “establishing trust” and extra time resources added to defining the relationship and the types of activities/services carried out were listed as potential negative aspects of such collaborations. Moreover, where collaborations of any kind are made trans-nationally, administrative (and cultural) burdens may be added, due to country differences.

The same *Guide to Financial Issues* defines a *third party* as a legal entity which did not sign the ECGA and which can contribute to the project by “making available its resources to the beneficiary” and “by carrying out part of the work itself.” A third party is, by definition, any legal entity which does not sign the ECGA. If a subcontractor follows its business interest, a third party will normally have an additional interest in the core of the project, although it won’t be responsible for any part of the project itself (the beneficiary of the grant will take full responsibility over the project’s outcome).

Both regarding *third party partnerships* and *subcontractors*, the topic of numbers was raised. If having a large number of partnerships may be beneficial (more work can be carried out, increased chances of dissemination etc.), coordination can become burdensome. Conversely, where the number of partnerships is limited, difficulties in managing a heavy workload can appear. The lack of a broader pool of knowledge and expertise and limited dissemination have also been mentioned as drawbacks of involving fewer organizations in supporting a project.

An *advisory board* works like an “informal group of mentors” that bring their specific industry/academic/organizational expertise and help guide the organization towards reaching its objectives [4]. It is a type of third party, a consultative body normally composed by people outside the organization, who can bring a fresh perspective on organizational proceedings.

Advisory boards were identified as being instrumental external parties who can provide expert advice and guidance to the project; however, the question of motivation was raised related to voluntary advisory boards, as well as issues related to their coordination for paid advisory boards.

Recommendations

The main solution to offset many of the potential issues that can arise from partnerships can be defined as constructing a risk management strategy based on devising a careful selection mechanism for future partners, adapted to the expectations within each project.
Correctly assessing the needs of each partner and trying to consider them through the duration of the collaboration is of crucial importance. Partners need to understand each other if they wish to collaborate effectively and working plans need to be clearly defined from the start of the collaboration. In this sense, ensuring that all partners benefit in some way from their involvement in the partnership is paramount.

Apart from knowing your partners’ expectations, of equal position is to understand their expertise and experience in working on a particular aspect, in order to make the best use of their involvement in the project. Whilst it comes with its own risks (different legislation, culture, customs etc.) the national diversity of partners was seen as a clear positive, as they can bring to the project different experiences and points of view.

Finally, a robust system of evaluation and monitoring can prevent potential negative outcomes of the collaboration.

Conclusions

Despite having pointed to some difficulties regarding partnerships, the general conclusion drawn from the discussions was that the advantages of creating partnerships far outweigh the potential problems that may appear between partners; involving organizations, third parties and advisors to provide support to publicly funded projects in science education can bring an array of mutually beneficial advantages to all partners.

The main solution to some of the underlying differences between organizations working together lies with clearly drawing the nature of the relationship at the beginning of the partnership. To achieve this, projects need to be aware of the objectives they wish to reach through the partnership and need to develop a clear vetting procedure that will allow them to choose the organizations most fitted to help them grasp these. If intra-organizational communication can be time consuming and can put extra pressure on organizations, it is recommended as a way of controlling the work of the partners, but also as a way of making sure that information flows freely between the different organizations and, that expectations are thus met on both sides of the partnership.

Acknowledgements

This paper is part of the Scientix observatory series. Scientix, the community for science education in Europe, facilitates regular dissemination and sharing of know-how and best practices in science education across the European Union (http://scientix.eu). In order to help the development and dissemination of different science education projects Scientix has set up the Scientix observatory which provides short overviews on the state of play of different topics related to science education (http://www.scientix.eu/web/guest/observatory). The work presented in this document is supported by the European Commission’s FP7 programme – project Scientix 2 (Grant agreement N. 337250), coordinated by European Schoolnet (EUN). The content of the document is the sole responsibility of the authors and it does not represent the opinion of the European Commission, and the Commission is not responsible for any use that might be made of information contained.
References

